

5 Tips for Effective Questioning (Teacher-Leader Version)

1. Plan to use questions that encourage thinking and reasoning

Students need to talk about mathematics with one another as well as when responding to the teacher's questions. When planning your lesson (anticipating) write down possible questions that you want to focus on, but remember to be flexible. Sometimes a different question from the one you had planned might elicit more information. Your role then is to elicit student responses by asking questions. Doing this consistently fosters discourse on mathematical thinking and reasoning. Well-posed questions can lead to an environment of thoughtful reflectiveness.

Here is a list of questions to help students increase understanding, explain strategies, describe relationships and find extensions to problems. Classify each item as assessing (1), advancing (2):

- _____ What is this problem about? What can you tell me about it?
- _____ How do you interpret that?
- _____ What do you know about this part?
- _____ What did not work?
- _____ How did you organize the information?
- _____ Why did you decide to use this approach?
- _____ Have you tried.. (a picture, diagram, table...)?
- _____ Where could you find information about that?
- _____ What is the relationship of this to that?
- _____ What is the same? What is different?
- _____ Can you write/find another problem similar to this?
- _____ Would another method work better?
- _____ Show me another related problem. Is there an easier problem?
- _____ Could you explain what you think you know right now?
- _____ Which words are most important? Why?
- _____ What was your estimate or prediction?
- _____ How do you feel about your answer?
- _____ What do you think comes next?
- _____ What else would you like to know?
- _____ Where could you go for help?
- _____ How could you help another student without telling the answer?
- _____ Is that the only possible answer?
- _____ How did you know you were done?
- _____ What made you think that was all you needed to do?

MORE MATH FOR MORE PEOPLE

- Is there a real life situation where this could be used?
- Where else would this strategy be used?
- _____ How would your method work with another problem?
- _____ What questions does this raise for you?
- _____ Can you explain why it works?
- _____ What parts are still difficult for you?
- _____ Is that true for all cases? Explain.
- _____ Can you think of a counterexample?
- _____ How would you prove that?
- ____ What assumptions are you making?
- _____ Can you explain what you have done so far? What else is there to do?
- _____ Why did you decide to use this method?
- _____ Can you think of another method that might have worked?
- _____ Is there a more efficient strategy?
- _____ Have you thought of all the possibilities? How can you be sure?
- _____ What do you think about what _____ said?
- _____ Do you agree? Why or why not?
- _____ Does anyone have the same answer but a different way to explain it?
- _____ Can you convince the rest of us that your answer makes sense?
- _____ What would happen if...? What if not?
- _____ Do you see a pattern? Can you explain the pattern?
- _____ Can you predict the next one? What about the last one?
- _____ What do you need to find out?
- _____ What tools will you need?
- _____ How would you describe the problem in your own words?
- _____ What do you know that is not stated in the problem?
- _____ How does this relate to...?
- _____ What ideas that we have learned before were useful in solving this problem?
- _____ Does your answer seem reasonable? Why or why not?
- _____ Can you describe your method to us all? Can you explain why it works?
- _____ What if you had started with... rather than...?
- _____ What if you could only use ...?
- _____ What are the key points or big ideas in this lesson?
- _____ Is there anything missing or that could be eliminated?
- _____ What made you think of ...?
- _____ How did you arrive at this conclusion?
- _____ What was your first step? What are you thinking of doing next?
- _____ What have you tried? What strategies are you using?
- _____ What is keeping you from continuing? What did not work?
- _____ What is the hard part of the problem?

MORE MATH FOR MORE PEOPLE

 _ How do you	know?			
 _What conclusion can you make?				
 _What would happen if?				
 _ How is	different from	? How does	compare to	?

2. Ask questions in ways that include everyone

Skit A: Use a "no hands up" rule

After a few hands have gone up some students stop thinking because they know the teacher will not ask them. When students have their hand up they too stop thinking as they already have the answer they want. "No hands up" encourages everyone to keep thinking as anyone may be called upon to respond.

Skit B: Ask questions that encourage a range of responses (focusing) while avoiding teacher - student - teacher - student "ping pong" (funneling)

Rather than asking for specific right answers, ask for ideas and suggestions. Encourage students to listen to and to reply to each other's responses. While engaged with a team in questioning avoid taking over the thinking for the students often referred to as funneling.

3. Give students time to think

Skit C: Demonstrate the use of wait time with the use of Study Team and Teaching Strategies and/or the use of mini whiteboards for independent work. Walk away from a team after asking an advancing question.

Wait time is the time interval between a teacher asking a question and the response which might be provided by either the teacher, themselves, or one of the students. Students need to take time to think before responding.

4. Avoid judging students responses

Skit D: Avoid judging student responses

"If you can both listen to children and accept their answers not as things to just be judged right or wrong but as pieces of information which may reveal what the child is thinking you will have taken a giant step towards becoming a master teacher rather than merely a disseminator of information."

Teaching by Listening--Toward a New Day in Math Classes Easley, J.A., Jr.: Zwoyer, Russell E.

When a teacher judges every response with "yes", "good", "nearly" and so on, students are likely to reason to themselves:

"The teacher said that was good. That is not what I was going to say. So what I was going to say cannot be good. So I won't say anything."

Acknowledge a response without evaluating it...do not close off alternative ideas.

5. Follow up students' responses in ways that encourage deeper thinking (Advancing the Thinking)

Situation:	Example:	
Ask students to repeat their explanation		
Invite students to elaborate		
Challenge students to offer a reason		
Cue alternative responses		
Support with non-verbal interest		
Encourage students to speculate		
Make challenging statements	Someone in this group saidwere they right?	
Allow rehearsal of responses	Try out the answer on your partner first.	
Encourage students to ask questions	Would anyone like to ask Susie a question about that?	
Ask students to think aloud		
Encourage students to make connections		
Thinking aloud with students		

CUT UP THE NEXT PAGE TO HAND OUT

2. Ask questions in ways that include everyone Skit A: Use a "no hands up" rule

After a few hands have gone up some students stop thinking because they know the teacher will not ask them. When students have their hand up they too stop thinking as they already have the answer they want. "No hands up" encourages everyone to keep thinking as anyone may be called upon to respond.

2. Ask questions in ways that include everyone

Skit B: Ask questions that encourage a range of responses (focusing) while avoiding teacher - student - teacher - student "ping pong" (funneling)

Rather than asking for specific right answers, ask for ideas and suggestions. Encourage students to listen to and to reply to each other's responses. While engaged with a team in questioning avoid taking over the thinking for the students often referred to as funneling.

3. Give students time to think

Skit C: Demonstrate the use of wait time with the use of Study Team and Teaching Strategies and/or the use of mini whiteboards. Walk away from a team after asking an advancing question.

Wait time is the time interval between a teacher asking a question and the response which might be provided by either the teacher, themselves, or one of the students. Students need to take time to think before responding.

4. Avoid judging students responses

Skit D: Avoid judging student responses

MORE MATH FOR MORE PEOPLE

"If you can both listen to children and accept their answers not as things to just be judged right or wrong but as pieces of information which may reveal what the child is thinking you will have taken a giant step towards becoming a master teacher rather than merely a disseminator of information."

Teaching by Listening--Toward a New Day in Math Classes Easley, J.A., Jr.: Zwoyer, Russell E.

When a teacher judges every response with "yes", "good", "nearly" and so on, students are likely to reason to themselves:

"The teacher said that was good. That is not what I was going to say. So what I was going to say cannot be good. So I won't say anything."

Acknowledge a response without evaluating it...do not close off alternative ideas.